Skip to contents

Running the Shiny app

run_app()
Run the Shiny Application

Workflow object and methods

mrp_workflow()
Create a new MRPWorkflow object
MRPWorkflow
MRPWorkflow objects
compare_models()
Compare models using LOO-CV
covar_hist()
Create geographic covariate distribution histogram
create_model()
Create a new MRPModel object
demo_bars()
Create demographic comparison bar plots
estimate_map()
Create a choropleth map of MRP estimates
estimate_plot()
Visualize estimates for demographic groups
link_acs()
Link sample data to ACS data
load_pstrat()
Load custom poststratification data
outcome_map()
Visualize raw outcome measure by geography
outcome_plot()
Create summary plots of the outcome measure
pp_check()
Perform posterior predictive check
preprocess()
Preprocess sample data
preprocessed_data()
Return preprocessed sample data
sample_size_map()
Create sample size map

Model object and methods

MRPModel
MRPModel objects
check_estimate_exists()
Check if poststratification has been performed
check_fit_exists()
Check if model has been fitted
diagnostics()
Return sampling diagnostics
fit()
Fit multilevel regression model using cmdstanr
formula()
Return model formula
log_lik()
Create inputs for leave-one-out cross-validation
metadata()
Return model metadata.
model_spec()
Return model specification
poststratify()
Run poststratification to generate population estimates
ppc()
Create input for posterior predictive check
save()
Save model object to file
stan_code()
Return model Stan code.
summary()
Return posterior summary table

Other functions

example_sample_data()
Return example data
example_pstrat_data()
Return example poststratification data
example_model()
Return example MRPModel object with estimation results.